機器學習_ML_學習曲線
API連結
官方文件
學習曲線與驗證曲線是在機器學習中很重要的兩條線,透過線的呈現可以明白模型究竟是高偏差(high bias)還是高方差(high variance)。
為什麼重要?
因為high bias and high variance在實務上的調校是不相同的!
你去對一個high bias的模型餵再多的資料,效果恐怕是有限的。
你去對一個high variance給了更多的特徵,那不是拿提汽油上場嗎?
high bias 代表 underfitting
high variance 代表 overfitting
學習來自吳恩達老師_機器學習_第六週課程
- 更多的數據
- high variance有效
- high bias沒效
- 嚐試用更少的特徵
- high variance有效
- 取得更有效的特徵
- high bias有效
- 用更高的多項式方式
- high bias有效
- high variance是浪費時間
- 減少正規項數值
- high bias有效
- 增加正規項數值
- high variance有效
學習曲線的部份,從sklearn官方說明可以知道!
Determines cross-validated training and test scores for different training set sizes.
確定不同訓練集大小的交叉驗證訓練和測試分數。
我們可以從學習曲線了解到,我們增加了資料集之後所得的益處有多少!
IMPORT
from sklearn.learning_curve import learning_curve
CLASS
sklearn.model_selection.learning_curve(
estimator, X, y, groups=None,
train_sizes=array([ 0.1, 0.33, 0.55, 0.78, 1. ]),
cv=None, scoring=None,
exploit_incremental_learning=False, n_jobs=1,
pre_dispatch=’all’, verbose=0, shuffle=False,
random_state=None)
參數說明
estimator
使用的分類器,但限制為需要有fit、predict兩個method!
X
訓練資料集
y
對應訓練資料集的label
groups
train_sizes
訓練資料集的使用,使用上可以給一個陣列
像上面的例子([0.1, 0.33, 0.55, 0.78, 1])
要一直大,限制在0-1之間!
或是透過np.linspace(0.1,1.0,n)來設置!
n的部份自行調整!
cv
default 3
定義拆分折數
預設使用分層K折交叉驗證。
scoring
exploit_incremental_learning
default False
n_jobs
default 1
使用多少CPU核心數
-1代表火力全開
pre_dispatch
verbose
default 0
過程是否輸出
0不輸出
1偶爾輸出
2一定輸出
shuffle
是否要亂數排序
random_state
default None
隨機數種子
屬性
回傳三個值!
train_sizes_abs
資料集的切割狀況
假如有1000,你設置了np.linspace(0.1,1.0,10)
那就會回傳100,200,…1000
train_scores
訓練資料集分數
test_scores
測試資料集分數
範例
下面是一個來自官方的範例
import numpy as np
import matplotlib.pyplot as plt
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
"""
Generate a simple plot of the test and training learning curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if ``y`` is binary or multiclass,
:class:`StratifiedKFold` used. If the estimator is not a classifier
or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validators that can be used here.
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
"""
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
digits = load_digits()
X, y = digits.data, digits.target
title = "Learning Curves (Naive Bayes)"
# Cross validation with 100 iterations to get smoother mean test and train
# score curves, each time with 20% data randomly selected as a validation set.
cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
estimator = GaussianNB()
plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4)
title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)"
# SVC is more expensive so we do a lower number of CV iterations:
cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
estimator = SVC(gamma=0.001)
plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4)
plt.show()
結果如下
上圖的部份,可以明確的發現,資料集的增加並未對模型帶來好的效果,並且這是一個高偏差的模型,調整上增加再多的模型也沒有用。
而下圖的部份在資料集的增加情況下,是有明顯的讓驗證資料集也提升。
範例2
書名:Python Machine Learning
作者:Sebastian Raschka
ISBN:978-986-434-140-5
# import lib
import matplotlib.pyplot as plt
# 學習曲線
from sklearn.learning_curve import learning_curve
# 驗證曲線
from sklearn.learning_curve import validation_curve
# 標準化
from sklearn.preprocessing import StandardScaler
# 標籤編碼
from sklearn.preprocessing import LabelEncoder
# 資料分集
from sklearn.cross_validation import train_test_split
# 管道
from sklearn.pipeline import Pipeline
# logistic
from sklearn.linear_model import LogisticRegression
import pandas as pd
import numpy as np
# get dateset
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data',header=None)
X = df.loc[:, 2:].values
y = df.loc[:, 1].values
# 將標籤編碼
le = LabelEncoder()
# 訓練之後直接轉換
y = le.fit_transform(y)
le.transform(['M', 'B'])
# 資料拆分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
學習曲線
# 設置pipeline
pipe_lr = Pipeline([
('scl', StandardScaler()), # 標準化
('clf', LogisticRegression( # logistic , 正規方式為l2
penalty='l2', random_state=0))
])
# 訓練,learning_curve預設使用分層k折交叉驗證法
train_sizes, train_scores, test_scores = learning_curve(
estimator=pipe_lr,
X=X_train,
y=y_train,
train_sizes=np.linspace(0.1, 1.0, 10),
cv=10,
n_jobs=1)
繪製圖形
# 訓練曲線
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
# 設置x軸是資料集,而y軸是十折的平均得分
plt.plot(train_sizes,train_mean,color='blue',marker='o',markersize=5,label='Training accuracy')
# 設置訓練曲線的均值+-標準差的區塊呈現
plt.fill_between(train_sizes,train_mean + train_std, train_mean - train_std, alpha=0.15, color='blue')
# 驗證曲線
test_mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
# 設置x軸是資料集,而y軸是十折的平均得分
plt.plot(train_sizes,test_mean,color='green',marker='s', linestyle='--',markersize=5,label='Validation accuracy')
# 設置驗證曲線的均值+-標準差的區塊呈現
plt.fill_between(train_sizes,test_mean + test_std, test_mean - test_std, alpha=0.15, color='green')
# 設置格線
plt.grid()
# 設置x、y軸
plt.xlabel('Number of training samples')
plt.ylabel('Accuracy')
# 產生標識在右下
plt.legend(loc='lower right')
# 設置y軸間距
plt.ylim([0.8, 1.0])
plt.show()
從圖形可以看的出來,針對訓練資料集的部份,正負了標準差之後的區域差異不大,但在驗證資料集的部份卻並非如此,這代表著這個模型有著過適的問題。
thanks for your sharing
回覆刪除