2017年10月11日 星期三

機器學習_ML_模型評估

機器學習_ML_模型評估

原文連結
在使用GridViewCV或是cross_val_score做模型評估的時候,總是會需要我們做scoring的設定,好做效能指標!(另一篇混洧矩陣也記得閱讀)

各種的數值計算都跟上面這張圖有關。(取自(維基百科))

SCIKIT-LEARN

下面的表格取自SCIKIT-LEARN,已經有幫我們做好各種類型演算法的模型評估的LIB了。
配上上圖的說明,可以很快速的了解各種模型評估的數值來源。
Scoring Function Comment
Classification
accuracy accuracy_score
average_precision average_precision_score
f1 f1_score for binary targets
f1_micro f1_score micro-averaged
f1_macro f1_score macro-averaged
f1_weighted f1_score weighted average
f1_samples f1_score by multilabel sample
neg_log_loss log_loss requires predict_proba support
precision etc. precision_score suffixes apply as with f1
recall etc. recall_score suffixes apply as with f1
roc_auc roc_auc_score
Clustering
adjusted_mutual_info_score adjusted_mutual_info_score
adjusted_rand_score adjusted_rand_score
completeness_score completeness_score
fowlkes_mallows_score fowlkes_mallows_score
homogeneity_score homogeneity_score
mutual_info_score mutual_info_score
normalized_mutual_info_score normalized_mutual_info_score
v_measure_score v_measure_score
Regression
explained_variance explained_variance_score
neg_mean_absolute_error mean_absolute_error
neg_mean_squared_error mean_squared_error
neg_mean_squared_log_error mean_squared_log_error
neg_median_absolute_error median_absolute_error
r2 r2_score

沒有留言:

張貼留言